
nbval Documentation
Release 0.9.6

Laslett, Cortes, Fauske, Kluyver, Pepper, Fangohr

Jul 30, 2020

CONTENTS

1 Command line usage 3

2 REGEX Output sanitizing 5

3 Validate this notebook 7

4 Examples of plugin behaviour 9

5 Avoid output comparison for specific cells 11

6 Skipping specific cells 13

7 Checking exceptions 15

8 Using tags instead of comments 17

9 Figures 19

10 Skipping certain output types 21

i

ii

nbval Documentation, Release 0.9.6

One of the powerful uses of the IPython notebook is for documentation purposes, here we use a notebook to demon-
strate the behaviour and usage of the IPython Notebook Validation plugin for py.test. The IPython notebook format
.ipynb stores outputs as well as inputs. Validating the notebook means to rerun the notebook and make sure that it
is generating the same output as has been stored.

Therefore, the user MUST make the following the distinction:

1. Running a notebook manually will likely change the output stored in the associated .ipynb file. These outputs
will be used as references for the tests (i.e. the outputs from the last time you ran the notebook)

2. Validating with py.test plugin - these tests run your notebook code seperately without storing the information,
the outputs generated will be compared against those in the .ipynb file

The purpose of the testing module is to ensure that the notebook is behaving as expected and that changes to underlying
source code, haven’t affected the results of an IPython notebook. For example, for documentation purposes - such as
this.

CONTENTS 1

nbval Documentation, Release 0.9.6

2 CONTENTS

CHAPTER

ONE

COMMAND LINE USAGE

The py.test program doesn’t usually collect notebooks for testing; by passing the --nbval flag at the command line,
the IPython Notebook Validation plugin will collect and test notebook cells, comparing their outputs with those saved
in the file.

$ py.test --nbval my_notebook.ipynb

There is also an option --nbval-lax, which collects notebooks and runs them, failing if there is an error. This
mode does not check the output of cells unless they are marked with a special #NBVAL_CHECK_OUTPUT comment.

$ py.test --nbval-lax my_notebook.ipynb

3

nbval Documentation, Release 0.9.6

4 Chapter 1. Command line usage

CHAPTER

TWO

REGEX OUTPUT SANITIZING

Since all output is captured by the IPython notebook, some pesky messages and prompts (with time-stamped messages,
for example) may fail tests always, which might be expected. The plugin allows the user to specify a sanitizing file at
the command prompt using the following flag:

$ py.test --nbval my_notebook.ipynb --sanitize-with my_sanitize_file

This sanitize file contains a number of REGEX replacements. It is recommended, when removing output for the tests,
that you replace the removed output with some sort of marker, this helps with debugging. The following file is written
to the folder of this notebook and can be used to santize its outputs:

[1]: %%writefile doc_sanitize.cfg
[regex1]
regex: \d{1,2}/\d{1,2}/\d{2,4}
replace: DATE-STAMP

[regex2]
regex: \d{2}:\d{2}:\d{2}
replace: TIME-STAMP

Writing doc_sanitize.cfg

The first replacement finds dates in the given format replaces them with the label ‘DATE-STAMP’, likewise for strings
that look like time. These will prevent the tests from failing due to time differences.

5

nbval Documentation, Release 0.9.6

6 Chapter 2. REGEX Output sanitizing

CHAPTER

THREE

VALIDATE THIS NOTEBOOK

This documentation is written as a Notebook. You can validate this notebook yourself, as shown below; the outputs
that you see here are stored in the ipynb file. If your system produces different outputs, the testing process will fail.
Just use the following commands:

$ cd /path/to/repo/docs/source
$ py.test --nbval index.ipynb --sanitize-with doc_sanitize.cfg

7

nbval Documentation, Release 0.9.6

8 Chapter 3. Validate this notebook

CHAPTER

FOUR

EXAMPLES OF PLUGIN BEHAVIOUR

The following examples demonstrate how the plugin behaves during testing. Test this notebook yourself to see the
validation in action!

These two imports produce no output as standard, if any warnings are printed out the cell will fail. Under normal
operating conditions they will pass.

[2]: import numpy as np
import time

If python doesn’t consistently print 7, then something has gone terribly wrong. Deterministic cells are expected to
pass everytime

[3]: print(5+2)

7

Random outputs will always fail.

[4]: print([np.random.rand() for i in range(4)])
print([np.random.rand() for i in range(4)])

[0.36133679016382714, 0.5043774697891126, 0.23281910875007927, 0.2713065513128683]
[0.5512421277985322, 0.02592706358897756, 0.05036036771084684, 0.7515926759190724]

Inconsistent number of lines of output will cause an error to be thrown.

[5]: for i in range(np.random.randint(1, 8)):
print(1)

1
1
1

Because the time and date will change with each run, we would expect this cell to fail everytime. Using the sanitize
file doc_sanitize.cfg (created above) you can clean up these outputs.

[6]: print('The time is: ' + time.strftime('%H:%M:%S'))
print("Today's date is: " + time.strftime('%d/%m/%y'))

The time is: 15:28:30
Today's date is: 21/12/16

9

nbval Documentation, Release 0.9.6

10 Chapter 4. Examples of plugin behaviour

CHAPTER

FIVE

AVOID OUTPUT COMPARISON FOR SPECIFIC CELLS

In case we want to avoid the testing process in specific input cells, we can write the comment **
#NBVAL_IGNORE_OUTPUT ** at the beginning of the them:

[7]: # NBVAL_IGNORE_OUTPUT
print('This is not going to be tested')
print(np.random.randint(1, 20000))

This is not going to be tested
12544

There’s also a counterpart, to ensure the output is tested even when using --nbval-lax :

[8]: # NBVAL_CHECK_OUTPUT
print("This will be tested")
print(6 * 7)

This will be tested
42

Note that unexecuted cells will always skip its output check:

[]: print('This is not going to be tested when unrun')
print(np.random.randint(1, 20000))

11

nbval Documentation, Release 0.9.6

12 Chapter 5. Avoid output comparison for specific cells

CHAPTER

SIX

SKIPPING SPECIFIC CELLS

If, for some reason, a cell should not be executed during testing, the comment # NBVAL_SKIP can be used:

NBVAL_SKIP
print("Entering infinite loop...")
while True:

pass

13

nbval Documentation, Release 0.9.6

14 Chapter 6. Skipping specific cells

CHAPTER

SEVEN

CHECKING EXCEPTIONS

Sometimes, we might want to allow a notebook cell to raise an exception, and check that the traceback is as we expect.
By annotating the cell with the comment ** # NBVAL_RAISES_EXCEPTION ** you can indicate that the cell is
expected to raise an exception. The full traceback is not compared, but rather just that the raised exception is the same
as the stored exception.

[3]: # NBVAL_RAISES_EXCEPTION
print("This exception will be tested")
raise RuntimeError("Foo")

This exception will be tested

RuntimeError Traceback (most recent call last)
<ipython-input-1-b97c0d501d6a> in <module>()

1 print("This exception will be tested")
----> 2 raise RuntimeError("Foo")

RuntimeError: Foo

This composes with the per-cell checking comments, so if you would like to avoid exceptions creating a test failure,
but do not want to check the traceback, use # NBVAL_IGNORE_OUTPUT

[3]: # NBVAL_RAISES_EXCEPTION
print("If the raised exception doesn't match the stored exception, we get a failure")
raise SyntaxError("Foo")

If the raised exception doesn't match the stored exception, we get a failure

RuntimeError Traceback (most recent call last)
<ipython-input-3-32dcc1c70a4e> in <module>()

1 # NBVAL_RAISES_EXCEPTION
2 print("If the raised exception doesn't match the stored exception, we get a

→˓failure")
----> 3 raise RuntimeError("Foo")

RuntimeError: Foo

[2]: # NBVAL_IGNORE_OUTPUT
NBVAL_RAISES_EXCEPTION
print("This exception will not be checked, but will not cause a failure.")
raise RuntimeError("Bar")

This exception will not be checked, but will not cause a failure.

15

nbval Documentation, Release 0.9.6

RuntimeError Traceback (most recent call last)
<ipython-input-2-bbee3f9e7de1> in <module>()

2 # NBVAL_RAISES_EXCEPTION
3 print("This exception will not be checked, but will not cause a failure.")

----> 4 raise RuntimeError("Bar")

RuntimeError: Bar

16 Chapter 7. Checking exceptions

CHAPTER

EIGHT

USING TAGS INSTEAD OF COMMENTS

If you do not want to put nbval comment annotations in your notebook, or your source language is not compatible with
such annotations, you can use cell tags instead. Cell tags are strings that are added to the cell metadata under the label
“tags”, and can be added and remove using the “Tags” toolbar from Notebook version 5. The tags that Nbval recog-
nizes are the same as the comment names, except lowercase, and with dashes (‘-’) instead of underscores (‘_’). For
instance, the comment “NBVAL_IGNORE_OUTPUT” becomes the tag “nbval-ignore-output”. However, for
“NBVAL_RAISES_EXCEPTION”, either “nbval-raises-exception” or the plain “raises-exception”
tag can be used, since as of Notebook 5.1, the latter is a special tag that tells the Notebook cell executor to continue
running normally after an exception is raised.

17

nbval Documentation, Release 0.9.6

18 Chapter 8. Using tags instead of comments

CHAPTER

NINE

FIGURES

[9]: import matplotlib.pyplot as plt
%matplotlib inline

Currently, only the matplotlib text output of the Figure is compared, but it is possible to modify the plugin to allow
comparison of the image whole string.

[10]: plt.imshow(np.array([[i + j for i in range(3)]
for j in range(3)]),

interpolation='None'
)

[10]: <matplotlib.image.AxesImage at 0x7f2cb3374198>

19

nbval Documentation, Release 0.9.6

20 Chapter 9. Figures

CHAPTER

TEN

SKIPPING CERTAIN OUTPUT TYPES

In case nbval is comparing some cell outputs you do not care about, like:

Traceback:missing key: TESTING dict_keys(['stderr']) != REFERENCE
dict_keys(['application/javascript', 'stderr'])

There is a workaround. Add the following to your conftest.py:

[1]: def pytest_collectstart(collector):
collector.skip_compare += 'text/html', 'application/javascript', 'stderr',

21

	Command line usage
	REGEX Output sanitizing
	Validate this notebook
	Examples of plugin behaviour
	Avoid output comparison for specific cells
	Skipping specific cells
	Checking exceptions
	Using tags instead of comments
	Figures
	Skipping certain output types

